Novel artificial metalloenzymes for olefin metathesis based on modified Grubbs-Hoveyda complexes

Aaron A. Ingram ${ }^{1}$, Ulrich Schwaneberg ${ }^{2,3}$, and Jun Okuda ${ }^{1}$
1) Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
2) Institute of Biotechnology, RWTH Aachen University, Worringerweg 3,52074 Aachen, Germany
3) DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany aaron.ingram@ac.rwth-aachen.de, jun.okuda@ac.rwth-aachen.de

Introduction: What are artificial metalloenzymes?

Artificial metalloenzymes represent an attractive approach for the design of biocatalysts by combining homogeneous catalysis with enzyme catalysis. A successful example are artificial metalloenzymes based on Grubbs-Hoveyda catalysts for olefin metathesis. ${ }^{[1,2]}$ We designed artificial metalloenzymes with iodide substituted Grubbs-Hoveyda complexes and compared them to their chloride containing parents.

Reaction of choice: Ring-closing metathesis (RCM)

Figure 1. Ruthenium-catalyzed ring-closing metathesis

Artificial metalloenzymes

Biological perspective
Non-natural (biorthogonal) reactions in water
Expanding reaction scope of enzymes / proteins

Chemical perspective
Solubilization of organometallic complexes
Well-defined second coordination sphere around metal atom "Protection" of complexes from degradation

Design of an artificial metalloenzyme for olefin metathesis

apo-NB4exp

Ru- \mathbf{X}_{2} @NB4exp

Figure 2. Engineered protein scaffold: Nitrobindin from Arabidopsis thaliana with two additional β-strands (NB4exp). Left: apo-NB4exp, right: NB4exp with conjugated Grubbs-catalyst (Ru-X X_{2} @NB4exp).

VS

Central questions:
Impact of halide ligand?

- Cross-interaction with protein?

Preparation of the artificial metalloenzymes

Figure 3. Fluorescence titration of apo-NB4 and conjugated variants using fluorescence dye ThioGlo- 1 .

Conjugation of the Ru-complex and β-barrel fold confirmed.

Figure 4. CD-spectrum of NB4exp and conjugated variants ($5 \mu \mathrm{M}$). Black: apo-NB4exp, green: Ru- $\mathrm{Cl}_{2} @ N B 4$ exp, blue: Ru-1 I_{2} @NB4exp.

Figure 4 CD-spectrum of NB4 exp and

Figure 7. TON for RCM of different tosylamides using Grubbs-Hoveyda complexes conjugated to NB4exp.
lodide complexes well suitable for synthesis of larger ring sizes.

Conclusion

Substituting chloride against iodide ligands in a Grubbs-Hoveyda catalyst embedded in nitrobindin improved the activity in ring closing metathesis in aqueous media.

Acknowledgement

We acknowledge the BioökonomieREVIER_INNO PlastiQuant (FKZ:031B0918E) and the German Federal Ministry of Education and Research (BMBF) for financial support.

